Videoconferencing uses audio and video telecommunications to bring
people at different sites together. This can be as simple as a
conversation between people in private offices (point-to-point) or
involve several (multipoint) sites in large rooms at multiple locations.
Besides the audio and visual transmission of meeting activities, allied
videoconferencing technologies can be used to share documents and
display information on whiteboards.
Simple analog videophone communication could be established as early as the invention of the television. Such an antecedent usually consisted of two closed-circuit television systems connected via coax cable or radio. An example of that was the German Reich Postzentralamt (post office) video telephone network serving Berlin and several German cities via coaxial cables between 1936 and 1940.[5][6]
During the first manned space flights, NASA used two radio-frequency (UHF or VHF) video links, one in each direction. TV channels routinely use this type of videotelephony when reporting from distant locations. The news media were to become regular users of mobile links to satellites using specially equipped trucks, and much later via special satellite videophones in a briefcase.
This technique was very expensive, though, and could not be used for applications such as telemedicine, distance education, and business meetings. Attempts at using normal telephony networks to transmit slow-scan video, such as the first systems developed by AT&T, first researched in the 1950s, failed mostly due to the poor picture quality and the lack of efficient video compression techniques. The greater 1 MHz bandwidth and 6 Mbit/s bit rate of the Picturephone in the 1970s also did not achieve commercial success, mostly due to its high cost, but also due to a lack of network effect —with only a few hundred Picturephones in the world, users had extremely few contacts they could actually call to, and interoperability with other videophone systems did not exist.
It was only in the 1980s that digital telephony transmission networks became possible, such as with ISDN networks, assuring a minimum bit rate (usually 128 kilobits/s) for compressed video and audio transmission. During this time, there was also research into other forms of digital video and audio communication. Many of these technologies, such as the Media space, are not as widely used today as videoconferencing but were still an important area of research.[7][8] The first dedicated systems started to appear in the market as ISDN networks were expanding throughout the world. One of the first commercial videoconferencing systems sold to companies came from PictureTel Corp., which had an Initial Public Offering in November, 1984.
In 1984 Concept Communication in the United States replaced the then-100 pound, US$100,000 computers necessary for teleconferencing with a $12,000 circuit board which doubled the video frame rate from to 30 frames per second, and which was reduced the equipment in size to a circuit board that fit into standard personal computers.[9][10] The company's founder, William J. Tobin also secured a patent for a codec for full-motion videoconferencing, first demonstrated at AT&T Bell Labs in 1986.[10][11]
Videoconferencing systems throughout the 1990s rapidly evolved from very expensive proprietary equipment, software and network requirements to a standards based technology that is readily available to the general public at a reasonable cost.
Finally, in the 1990s, IP (Internet Protocol) based videoconferencing became possible, and more efficient video compression technologies were developed, permitting desktop, or personal computer (PC)-based videoconferencing. In 1992 CU-SeeMe was developed at Cornell by Tim Dorcey et al. In 1995 the first public videoconference between North America and Africa took place, linking a technofair in San Francisco with a techno-rave and cyberdeli in Cape Town. At the Winter Olympics opening ceremony in Nagano, Japan, Seiji Ozawa conducted the Ode to Joy from Beethoven's Ninth Symphony simultaneously across five continents in near-real time.
While videoconferencing technology was initially used primarily within internal corporate communication networks, one of the first community service usages of the technology started in 1992 through a unique partnership with PictureTel and IBM Corporations which at the time were promoting a jointly developed desktop based videoconferencing product known as the PCS/1. Over the next 15 years, Project DIANE (Diversified Information and Assistance Network) grew to utilize a variety of videoconferencing platforms to create a multistate cooperative public service and distance education network consisting of several hundred schools, neighborhood centers, libraries, science museums, zoos and parks, public assistance centers, and other community oriented organizations.
In the 2000s, videotelephony was popularized via free Internet services such as Skype and iChat, web plugins and on-line telecommunication programs which promoted low cost, albeit low-quality, videoconferencing to virtually every location with an Internet connection.
In May 2005, the first high definition video conferencing systems, produced by LifeSize Communications, were displayed at the Interop trade show in Las Vegas, Nevada, able to provide 30 frames per second at a 1280 by 720 display resolution.[12][13] Polycom introduced its first high definition video conferencing system to the market in 2006. Currently, high definition resolution has now become a standard feature, with most major suppliers in the videoconferencing market offering it.
Recent technological developments by Librestream have extended the capabilities of video conferencing systems beyond the boardroom for use with hand-held mobile devices that combine the use of video, audio and on-screen drawing capabilities broadcasting in real-time over secure networks, independent of location. Mobile collaboration systems allow multiple people in previously unreachable locations, such as workers on an off-shore oil rig, the ability to view and discuss issues with colleagues thousands of miles away. Traditional video conferencing system manufacturers have begun providing mobile applications as well, such as AVer Information’s VCLink app which allows for live and still image streaming.
Simple analog videophone communication could be established as early as the invention of the television. Such an antecedent usually consisted of two closed-circuit television systems connected via coax cable or radio. An example of that was the German Reich Postzentralamt (post office) video telephone network serving Berlin and several German cities via coaxial cables between 1936 and 1940.[5][6]
During the first manned space flights, NASA used two radio-frequency (UHF or VHF) video links, one in each direction. TV channels routinely use this type of videotelephony when reporting from distant locations. The news media were to become regular users of mobile links to satellites using specially equipped trucks, and much later via special satellite videophones in a briefcase.
This technique was very expensive, though, and could not be used for applications such as telemedicine, distance education, and business meetings. Attempts at using normal telephony networks to transmit slow-scan video, such as the first systems developed by AT&T, first researched in the 1950s, failed mostly due to the poor picture quality and the lack of efficient video compression techniques. The greater 1 MHz bandwidth and 6 Mbit/s bit rate of the Picturephone in the 1970s also did not achieve commercial success, mostly due to its high cost, but also due to a lack of network effect —with only a few hundred Picturephones in the world, users had extremely few contacts they could actually call to, and interoperability with other videophone systems did not exist.
It was only in the 1980s that digital telephony transmission networks became possible, such as with ISDN networks, assuring a minimum bit rate (usually 128 kilobits/s) for compressed video and audio transmission. During this time, there was also research into other forms of digital video and audio communication. Many of these technologies, such as the Media space, are not as widely used today as videoconferencing but were still an important area of research.[7][8] The first dedicated systems started to appear in the market as ISDN networks were expanding throughout the world. One of the first commercial videoconferencing systems sold to companies came from PictureTel Corp., which had an Initial Public Offering in November, 1984.
In 1984 Concept Communication in the United States replaced the then-100 pound, US$100,000 computers necessary for teleconferencing with a $12,000 circuit board which doubled the video frame rate from to 30 frames per second, and which was reduced the equipment in size to a circuit board that fit into standard personal computers.[9][10] The company's founder, William J. Tobin also secured a patent for a codec for full-motion videoconferencing, first demonstrated at AT&T Bell Labs in 1986.[10][11]
Videoconferencing systems throughout the 1990s rapidly evolved from very expensive proprietary equipment, software and network requirements to a standards based technology that is readily available to the general public at a reasonable cost.
Finally, in the 1990s, IP (Internet Protocol) based videoconferencing became possible, and more efficient video compression technologies were developed, permitting desktop, or personal computer (PC)-based videoconferencing. In 1992 CU-SeeMe was developed at Cornell by Tim Dorcey et al. In 1995 the first public videoconference between North America and Africa took place, linking a technofair in San Francisco with a techno-rave and cyberdeli in Cape Town. At the Winter Olympics opening ceremony in Nagano, Japan, Seiji Ozawa conducted the Ode to Joy from Beethoven's Ninth Symphony simultaneously across five continents in near-real time.
While videoconferencing technology was initially used primarily within internal corporate communication networks, one of the first community service usages of the technology started in 1992 through a unique partnership with PictureTel and IBM Corporations which at the time were promoting a jointly developed desktop based videoconferencing product known as the PCS/1. Over the next 15 years, Project DIANE (Diversified Information and Assistance Network) grew to utilize a variety of videoconferencing platforms to create a multistate cooperative public service and distance education network consisting of several hundred schools, neighborhood centers, libraries, science museums, zoos and parks, public assistance centers, and other community oriented organizations.
In the 2000s, videotelephony was popularized via free Internet services such as Skype and iChat, web plugins and on-line telecommunication programs which promoted low cost, albeit low-quality, videoconferencing to virtually every location with an Internet connection.
In May 2005, the first high definition video conferencing systems, produced by LifeSize Communications, were displayed at the Interop trade show in Las Vegas, Nevada, able to provide 30 frames per second at a 1280 by 720 display resolution.[12][13] Polycom introduced its first high definition video conferencing system to the market in 2006. Currently, high definition resolution has now become a standard feature, with most major suppliers in the videoconferencing market offering it.
Recent technological developments by Librestream have extended the capabilities of video conferencing systems beyond the boardroom for use with hand-held mobile devices that combine the use of video, audio and on-screen drawing capabilities broadcasting in real-time over secure networks, independent of location. Mobile collaboration systems allow multiple people in previously unreachable locations, such as workers on an off-shore oil rig, the ability to view and discuss issues with colleagues thousands of miles away. Traditional video conferencing system manufacturers have begun providing mobile applications as well, such as AVer Information’s VCLink app which allows for live and still image streaming.
0 comments:
Post a Comment
Note: only a member of this blog may post a comment.